Assessment Schedule - 2006

Calculus: Differentiate functions and use derivatives to solve problems (90635)

Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Differentiate functions and use derivatives to solve problems.	1a	$\frac{dy}{dx} = 5(x^2 - 3x)^4 (2x - 3)$	A1	Or equivalent.	Achievement: Four of code A
		1b	$\frac{dy}{dx} = -5\csc^2 2x.2$ $= -10\csc^2 2x$	A1	Or equivalent.	including at least one of code A1 and one of code A2.
ent		1c	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x+3)\cos x - \sin x}{(x+3)^2}$	A1	Or equivalent.	
Achievement		2	$\frac{dN}{dt} = 5e^{0.5t} + \frac{24}{2t+7}$	A1 or	Must show $\frac{dN}{dt}$	
			When $t = 7$, $\frac{dN}{dt} = 167$ mice / month.	A2	Accept any rounding. Units not required.	
		3	$\frac{dP}{dx} = \frac{500\ 000}{x^2} - \frac{1}{25}$	A1 or	Must show $\frac{dP}{dx}$	
			$\frac{dP}{dx} = 0 \implies x = 3536 \text{ rpm}$ or $2500\sqrt{2}$	A2	Accept any rounding. Units not required.	

	Achievement Criteria	Q	Evidence	Code	Judgement	Sufficiency
th Merit	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	4	$f(x) = 3x^{2} + x + 5$ $f(x+h) = 3(x+h)^{2} + (x+h) + 5$ $= 3x^{2} + 6xh + 3h^{2} + x + h + 5$ $f'(x) = \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} (6x + 3h + 1)$ $= 6x + 1$	A1 M1	Must show $\lim_{h\to 0}$ at least once. Must use first principles formula to arrive at $f'(x)$	Merit: Achievement plus three of code M including at least one of code M1 and one of code M2 or two of code M1 and two of code M2.
Achievement with Merit		5	One possible solution 10 9 8 7 6 5 4 0 3 2 1 1 2 3 4 5 6 7 8 9 10	A1 M1	 Meets 4 of these 5 criteria. Discontinuous at x = 5 and continuous for 0 < x < 5 and 5 < x < 9. Concave down for 0 < x < 5 Zero gradient at (3,8) Hole at (5,6) Cusp at (7,3) Accept graph which extends for x ≤ 0, x ≥ 9. 	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	6	$x = 6\cos t$ $y = 4\sin t$ Point of contact $(3\sqrt{3}, 2)$ or $(5.196, 2)$ Parametric: $\frac{dy}{dx} = \frac{4\cos t}{-6\sin t}$ Implicit: $\frac{dy}{dx} = -\frac{4x}{9y}$ Gradient of tangent: $\frac{-2\sqrt{3}}{3}$ Equation of tangent: $\frac{y-2}{x-3\sqrt{3}} = \frac{-2\sqrt{3}}{3}$ When $x = 0$ $y = 8$	A1 M1 or A2 M2	Must show $\frac{dy}{dx}$. Or equivalent.	Merit: Achievement plus three of code M including at least one of code M1 and one of code M2 or two of code M1 and two of code M2.
Achievement with Merit		7	$\frac{dr}{dt} = 8$ $s = \sqrt{r^2 - 9}$			
			$\frac{\mathrm{d}s}{\mathrm{d}r} = \frac{r}{\sqrt{r^2 - 9}}$	A1	Correct $\frac{ds}{dr}$	
			$\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}r} \cdot \frac{\mathrm{d}r}{\mathrm{d}t}$ $\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{8r}{\sqrt{r^2 - 9}}$	or	A1 or A2 available for further evidence	
			When $r = 12$, $\frac{ds}{dt} = \frac{96}{\sqrt{135}}$ $\frac{ds}{dt} = 8.26 \text{ m min}^{-1}$	A2 M2	Units not required. Or equivalent. Accept –8.26	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement with Excellence	Solve more complex differentiation problem(s).	8	$\frac{dV}{dt} = \frac{90}{20}$ $= 4.5 \text{ cm}^3 \text{ s}^{-1}$ $S = 4\pi r^2$ $\frac{dS}{dr} = 8\pi r$ $V = \frac{4}{3}\pi r^3$ $\frac{dV}{dr} = 4\pi r^2$ $\frac{dS}{dt} = \frac{dV}{dt} \frac{dS}{dr} \frac{dr}{dV}$ $= 4.5 \cdot 8\pi r \cdot \frac{1}{4\pi r^2}$ $= \frac{9}{r}$ $\frac{4}{3}\pi r^3 = 1500 \text{ cm}^3$ $r = 7.10 \text{ cm}$ $\frac{dS}{dt} = \frac{9}{7.10}$ $= 1.27 \text{ cm}^2 \text{ s}^{-1}$	АМЕ	Must see $\frac{dS}{dr} \text{ and } \frac{dV}{dr}$ Must see $\frac{dS}{dt}$ Units not required. Or equivalent.	Excellence: Two of code M1 and two of code M2 and one of code E.

Judgement Statement

Calculus: Differentiate functions and use derivatives to solve problems (90635)

Achievement	Achievement with Merit	Achievement with Excellence
Differentiate functions and use derivatives to solve problems.	Demonstrate knowledge of advanced concepts and techniques of differentiation and solve differentiation problems.	Solve more complex differentiation problem(s).
	Achievement plus	
$4 \times A$ including at least $1 \times A1$ and $1 \times A2$	$3 \times M$ including at least 1 \times M1 and 1 \times M2	$2\times M1$ and $2\times M2$ plus $1\times E$
	OR	
	$2 \times M1$ and $2 \times M2$	